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ABSTRACT

Accelerator injector designs have been evaluated using two computer
codes. The first code self consistently follows relativistic particles in two
dimensions. Fields are obtained in the Darwin model which includes inductive
effects. This code {is used to study cathode emission and acceleration to full
jnjector voltage. The second code transports a fixed segment of a beam along
the remainder of the beam line. Using these two codes the effects of electrode

configuration on emittance, beam quality and beam transport have been studied.
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INTRODUCTION:-

Many anticipated experiments place constraints on acceptable beam
emittance and quality. To study the effect of various accelerator injector
designs on these parameters an effort is underway to numerically model the
injector and subsequent transport. Generally, an accelerator injector design
may be studied using either steady-state or time-dependent computer codes.
The steady-state codes generally fix electrode voltages and then follow
macro-particles or trace single particle rays until a solution 1s reached.
Time-dependent codes are typically particle-in-cell (PIC) simulations. The
PIC codes have a time step 1imitation and also tend to radiate anomalously
large amounts of energy into electromagnetic modes.

In this work the problems of a full PIC electromagnetic simulation are
avoided by using the Darwin field approximation [1-2]. This model has been
implemented in the DPC (Darwin Particle Code) computer code. The Darwin model
1s the magnetoinductive 1imit of Maxwell's equations, which retains the first
order relativistic correction to the particle Lagrangian. In the Darwin
approximation inductive effects are modeled without creating non-physical
radiation. The DPC code is consequently viewed as a useful implementation of
a physics model which includes inductive effects absent from a steady state
calculation.

The DPC code solves for the transport of a beam from emission through
acceleration up to full energy. Subsequent transport is obtained from the WTC
(Wire Transport Code) computer code [3]. The WTC code was originally written
to study transport in the presence of an electrostatically charged wire. It

has since been modified to additionally handle general transport through

magnet elements and accelerating gaps.
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INJECTOR EVALUATION STRATEGY

The desirability of an injector design is influenced by the requirement
of matching into the rest of the accelerator. Consequently, injector designs
are evaluated in two parts. First, the DPC code solves for beam dynamics over
a distance of typically 50 cm. This includes the field emission from a cathode
and acceleration up to the energy of the injector. Particle trajectories are
followed from the emitting surface and past all electrodes including the anode.
At this point beam transport is continued by using WTC to follow the motion of
a group of particles which exit the DPC computational region during a time
step. This amounts to following a slice of the beam at a fixed distance from
the beam head. The DPC calculation reveals the immediate effect of parameter
choices such as the A-K gap accelerating stress, electrode configuration and
axial magnetic field profile. The WTC results show how a particular beam

evolves into the accelerator including possible current loss and emittance

growth.

DPC MODEL

DPC solves the relativistic force equation 1n cartesian x, y, z

coordinates,
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where m is particle mass, vy = (1 - (v/c)z) ., vV is velocity q is charge,

¢ is the speed of light, U= yv/c, E is the electric field and E'1s the



magnetic field. Axisymmetry is assumed so fields are only functions of
r and z. Consistent with this assumption the current and charge density are
obtained from the particles by spreading these quantities in theta.

Flelds are obtained from Maxwell's equations in the Darwin approximation.
The practical consequence of the Darwin approximation is the neglect of the
solenoidal part of the displacement current. Denoting solenoidal by subscript
t and irrotational by subscript 2 Maxwell's equations in the Darwin

approximation are below.
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Hereafter 3t will be denoted by B since a magnetic field is strictly solenoidal.

DPC solves for fields on a rectangular r, z grid which contains an anode,
a cathode and may also contain additional electrodes. Since axisymmetry 1s
assumed it 1s not necessary to obtain the solenoidal part of the source terms
to solve Eq. (2b). 1In the most general Darwin model because the left side of
Eq. (2b) 1s solenoidal this step is necessary. In the DPC implementation the

following two elliptic equations are solved for B,
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where ¥g = rBe, ¥y = er. Ae is the theta component of the vector
potential, and a* = r2 V. (r‘zv. Solving for ¥ gives Be and the other

two components are,
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The DPC electric field is calculated from equations obtained by letting

El = -9 ¢ in Eq. (2c) and taking the curl of Eq. (2d).
2
Vé=-4xp (5a)
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WTC MODEL

WTC is a particle code [3] which transports a beam slice or equivalently
a group of particles exiting the DPC computational domain in one time step.
The relativistic beam slice is transported in the paraxial approximation with
the z velocity assumed to be the speed of 1ight for all particles. Thus, z =
ct and only the transverse trajectory is calculated from the following force

equations.
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The electric fields are obtained from the electrostatic equation.

r
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In Eq. (6) there is no Ee contribution since inductive effects due to particle
motion are not included. The magnetic field in Eq. (6) 1s due to the Be of

the beam and magnetic fields of focus coils. The beam Be is obtained from

Amperes law without a displacement current,

I
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where Ir is the current enclosed at radifus r. The magnetic field due to ex-
ternal colls is calculated from analytic formulas for the Bz (r,z) component.

The Br component is given by a rearrangement and integration of ¢ « §'= 0.

r
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For large aspect ratio solenoids Bz is assumed to be independent of radius.



RESULTS

Many different injector designs have been evaluated using a variety of

diagnostics. The parameters for a typical diode configuration are given in

Table 1.
TABLE 1.
Peak voltage 2.4 WeV
Voltage rise time 20 ns
A-K gap 13 ¢cm
Cathode radius 7 cm
Peak B, 510 gauss

For this case DPC solves for beam dynamics in a region 16 cm in radius and
60 cm in the axial or z direction. Figure 1 i1llustrates the geometry showing
the 8 cm anode bore which expands to 12.5 cm at z = 30 cm.

The electron beam produced by the accelerator must be born in a region
free of magnetic field. A magnetic field on the cathode gives rise to an
equivalent emittance contribution which is undesirable. Since a finite
magnetic field is necessary to focus a beam expanding due to 1ts space
charge, the magnetic field increases from zero at the cathode. Figure 2 shows
the Bz(z) profile due to external coils.

The peak Bz in Table 1 refers to the first maximum along the beam line
which s shown in Fig. 2 at z = 35 cm. The magnetic field profile due to

external coils is dc and thus it must be set for a beam at the full voltage.



DPC ran for a total of 30 ns which includes the 20 ns voltage rise time
and 10 ns of steady state operation. During the rise time the effect of the
energy mismatched dc magnetic field is clearly visible in the particle trajec-
tories. At 5 ns intervals the DPC simulation was halted and test particles
were launched at r = 2 cm from the cathode. The radius as a function of z is
shown in Fig. 3 at t = 0, 5, 10, 15 ns respectively.

The trajectory on the r, z plot 1s a projection showing an oscillation of
increasing period as time increases. This corresponds to higher energy as
trajectories are followed further into the rise time.The actual trajectory is
a helix. This can be verified by comparing the x, y orbit projection at t = 0
and 10 ns shown in Fig. 4.

The dotted trajectory at t = 0 spirals around almost an angle of 4w,
whereas the solid trajectory rotates only v. The dc magnetic field is set
for the highest energy or equivalently the “test" trajectories at the latest
time. Thus, the t = 10 trajectory in Fig. 4 most closely characterizes a beam
trajectory corresponding to the dc field. The orbit type (for this initial |
condition) changes from non-axis encircling to nearly axis encircling between
t=0and t =10.

One of the most useful diagnostics generated by DPC is the brightness £,

plotted as a function of current. In Eq. (10) Iz is the z directed current
I = 1rvietvy) . (10)

enclosed by the V4 phase space (x,y,vx/c.vy/c)e111psoid volume. Figure 5

shows A for particles with 57 cm < z < 60 cm and Iz ranging from 500 to

9100 amps. For this case £ varies from 2 x 103 to 3.5 x 103 amp/(rad2 - cmz).



The trough in the curve near Iz = 3000 is indicative of diminished phase space
current density in this region. Between 4000 and 8500 amps & is increasing
which means the enclosed current increases more rapidly than V4 over the
corresponding region of phase space.

For this case the phase space exiting DPC at t = 30 ns has been trans-
ported 220 cm with the WTC code. The root mean square radius R(z) is plotted
in Fig. 6. The z = 0 position corresponds to z = 60 on the DPC grid. The
rectangles along the abscissa indicate the positions of magnet elements. It
can be seen R decreases from 7.5 to 3.5 cm which focuses the beam into the
7 cm radius beam pipe. The oscillation wavelength is approximately 100 cm.

The behavior of A during transport is indicated by the inverse square of
the normalized emittance, E plotted in Fig. 7. For uniformly filled phase
space V4 is proportional to Ez. In this case no current is lost so & is

proportional to E'z. assuming uniformly f11led phase space. Within this

approximation Fig. 7 shows £ only has a 20% variation over 220 cm.

FIGURES
Fig. 1. Geometry.
Fig. 2. Magnetic field profile.
Fig. 3. Particle trajectories, r(z).
Fig. 4. Particle trajectories, x, v.
Fig. 5. Brightness versus enclosed current.
Fig. 6. Beam radius versus z.

Fig. 7. Inverse emittance squared.
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